本文最后更新于 422 天前,其中的信息可能已经有所发展或是发生改变。
题目描述
给定两个单词 word1 和 word2 ,返回使得 word1 和 word2 相同所需的最小步数。
每步 可以删除任意一个字符串中的一个字符。
- 示例1:
输入:word2 = "sea", word2 = "eat"
输出: 2
解释:第一步将"sea"变为"ea", 第二步将"eat"变为"ea"
- 示例2:
输入:word2 = "leetcode", word2 = "etco"
输出: 4
提示:
- 1<=word1.length,wordl2.length<=500
word1和word2只包含小写英文字母
解题思路
- 确定dp数组的含义 dp[i][j]: 以i-1结尾的world1, 和以j-1结尾的world2, 想要达到相等,所需要删除的最少元素个数
- 递推公式
word1[i-1]与word2[j-1]相等时
dp[i][j] = dp[i-1][j-1]
word1[i-1]与word2[j-1]不相等时
- 删除word1[i-1], 最少操作次数为dp[i-1][j]+1
- 删除word2[j-1], 最少操作次数为dp[i][j-1]+1
删除word1[i-1]、word2[j-1], 最少操作次数为dp[i-1][j-1]+2(这种情况其实包含在上述两种情况中)dp[i][j] = min(dp[i-1][j]+1, dp[i][j-1]+1)
- dp数组初始化 dp[i][0]: word2为空字符串,以i-1结尾的字符串word1需要删除i个元素才能和word2相同, dp[i][0]=i dp[0][j]: 同理, dp[0][j]=j
- 确定遍历顺序 从上到下,从左到右
- 打印dp数组
代码实现
核心模式
class Solution{
public:
int minDistance(string word1, string word2){
vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));
// initialize the DP array
for (int i = 0; i <= word1.size(); i++){
dp[i][0] = i;
}
for (int j = 0; j <= word2.size(); j++){
dp[0][j] = j;
}
// traversal
for (int i = 1; i <= word1.size(); i++){
for (int j = 1; j <= word2.size(); j++){
if (word1[i - 1] == word2[j - 1]){
dp[i][j] = dp[i - 1][j - 1];
}else{
dp[i][j] = std::min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);
}
}
}
return dp[word1.size()][word2.size()];
}
};
ACM模式
#include <iostream>
#include "dynamicPro.h"
class Solution{
public:
int minDistance(string word1, string word2){
vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));
// initialize the DP array
for (int i = 0; i <= word1.size(); i++){
dp[i][0] = i;
}
for (int j = 0; j <= word2.size(); j++){
dp[0][j] = j;
}
// traversal
for (int i = 1; i <= word1.size(); i++){
for (int j = 1; j <= word2.size(); j++){
if (word1[i - 1] == word2[j - 1]){
dp[i][j] = dp[i - 1][j - 1];
}else{
dp[i][j] = std::min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);
}
}
}
print2DVector(dp);
return dp[word1.size()][word2.size()];
}
};
int main(){
Solution solution;
cout << "Result1's DP array = " << solution.minDistance("sea", "eat") << endl;
cout << "Result2's DP array = " << solution.minDistance("leetcode", "etco") << endl;
return 0;
}
- 输出
Result1's DP array = [[0, 1, 2, 3], [1, 2, 3, 4], [2, 1, 2, 3], [3, 2, 1, 2]]
2
Result2's DP array = [[0, 1, 2, 3, 4], [1, 2, 3, 4, 5], [2, 1, 2, 3, 4], [3, 2, 3, 4, 5], [4, 3, 2, 3, 4], [5, 4, 3, 2, 3], [6, 5, 4, 3, 2], [7, 6, 5, 4, 3], [8, 7, 6, 5, 4]]
4